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1. Introduction 

The Constraint Optimization Problem (COP) is a commonly used mathematical 
formalism that can express many real-world situations. When the COP contains 
discrete variables, however, the number of combinations of variable assignments 
to consider is exponential in the number of variables. For example, adding just 20 
binary variables to a COP multiplies the number of combinations to consider by 
over one million. This means that even if standard hardware and software efficiency 
techniques can provide orders of magnitude in increased speed, they can become 
quickly overwhelmed as problems become larger. 

A variety of techniques have been developed to address the complexity of COPs. 
These techniques combine search algorithms with constraint propagation to try to 
find good solutions quickly without testing each possible combination of variable 
assignments. Some approaches are systematic and guaranteed to produce an 
optimal solution while others give up optimality in an effort to find near-optimal 
solutions faster. 

Unfortunately, COP is nondeterministic polynomial time hard (NP-hard) in 
general, meaning that for any algorithm there exists a problem instance for which 
the runtime is exponential in the size of the problem input. In practical terms, this 
means that even modestly sized problems can be too complex to solve in a 
reasonable amount of time even for the most sophisticated algorithms. 

This report reviews the literature on COPs. Section 2 defines the Constraint 
Satisfaction Problem (CSP) and extends it to define several COP variants. Section 
3 describes a variety of algorithms and techniques used to solve CSPs and COPs. 
Section 4 summarizes the findings. Someone who needs to solve a CSP or COP 
should find this report useful for choosing an effective representation or an efficient 
algorithm. 

2. Constraint Optimization Problems 

2.1 Constraint Satisfaction Problems 

The CSP (Montanari 1974) is a very common problem representation in the 
artificial intelligence literature (Wallace 1996) and serves as the basis of the COP. 
It is useful for describing problems in which a set of decisions must be made, but 
because these decisions can interact with one another, not all combinations of 
choices are valid. The problem is to find any combination of choices that is valid 
or to prove that no such combination exists, and this problem is NP-complete (i.e., 
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when it is both in NP and NP-hard), in general. In a CSP, each decision to be made 
is called a variable, each possible choice for each decision is called a value, the 
interactions between decisions are called constraints, and combinations of choices 
are called assignments. These terms are further described in the following 
definitions. 

Definition 2-1. CSP: Given a set of variables V, a set of domains D, where each 
domain Di ∈ D is a set of possible values for a variable vi ∈ V, and a set of 
constraints C over the variables of V, produce an assignment of values to variables 
that satisfies all of the constraints. 

Definition 2-2. Constraint: Given a CSP with variables V, domains D, and 
constraints C, a constraint is a relation over the set of possible assignments to a 
subset of the variables of V. This subset of variables is called the scope of the 
constraint. Each possible assignment to the variables in the scope is called a tuple. 
A constraint is therefore a relation that defines which tuples over the scope of the 
constraint satisfy it and which tuples violate it. A constraint c1 is tighter than another 
constraint c2 if the set of complete assignments that satisfy c1 is a subset of the set 
of complete assignments that satisfy c2. 

Definition 2-3. Assignment: Given a CSP with variables V, domains D, and 
constraints C, an assignment is a mapping of variables of V to values in the 
corresponding domains of D. A complete assignment specifies a value for every 
variable of V, and a partial assignment specifies values for a subset of the variables 
of V. A solution is a complete assignment that does not violate any of the constraints 
of C. 

In a special case of CSP, every variable has a domain with only 2 values, TRUE 
and FALSE. This type of variable is known as a Boolean variable. A CSP of 
Boolean variables is known as a Boolean satisfiability (SAT) problem. 

Definition 2-4. SAT: Given a set of variables V, each with the domain {TRUE, 
FALSE}, and a set of constraints C over the variables of V, produce an assignment 
of values to variables that satisfies all of the constraints. 

The constraints of an instance of SAT are generally described as a set of Boolean 
clauses. 

Definition 2-5. Boolean clause: A clause is a disjunction of literals. A literal is 
either a Boolean variable or its negation. If B is a Boolean variable, the negation of 
B is written ¬B, and ¬B evaluates to the logical opposite of B (that is, if B = TRUE, 
then ¬B = FALSE, and if B = FALSE, then ¬B = TRUE). If B and C are Boolean 
variables, the disjunction of B and C is written B ∨ C, and B ∨ C evaluates to the 
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logical “or” of B and C (that is, B ∨ C = TRUE if B = TRUE or if C = TRUE, and 
B ∨ C = FALSE if B = FALSE and C = FALSE). 

Like CSP, SAT is NP-complete, in general. One attribute of all NP-complete 
problems is the fact that it is possible to convert an instance from any NP-complete 
representation to any other NP-complete representation in polynomial time. In 
particular, any finite-domain CSP (even those with variable domains of more than 
2 values) can be transformed into an equivalent instance of SAT in polynomial 
time. This can be accomplished by creating one Boolean variable for each value in 
the domain of each variable in the original CSP. For example, suppose the original 
CSP contains a variable x with the domain {A, B, C}. First, create one Boolean 
variable for each value in the domain; call them xA, xB, and xC. For each Boolean 
variable xi, xi = TRUE in the SAT transformation represents x = i in the original 
CSP. 

A set of clauses in the SAT transformation can force exactly one value to be 
assigned to each variable of the original CSP. In this example, this clause requires 
at least one of the values to be assigned: xA ∨ xB ∨ xC. 

It is possible to prevent more than one of the values from being assigned by adding 
one clause for each pair of values: ¬xA ∨ ¬xB, ¬xA ∨ ¬xC, and ¬xB ∨ ¬xC. 

Finally, it is possible to encode the original CSP constraints as clauses over the 
Boolean variables. Suppose that the original CSP contains a second variable y with 
the domain {A, B, C} and the constraint {x = A, y = B} is an illegal assignment. 
This can be represented in the SAT transformation with a clause that forces any 
solution to avoid at least one of these variable assignments: ¬xA ∨ ¬yB. 

Altogether, this transformation is linear in the size of the constraints of the original 
CSP and quadratic in the size of its largest variable domain. 

2.2 Constraint Optimization Problems 

CSPs can be extended to represent not only which combinations of choices are 
valid, but also which combinations of choices are preferred. The problem is to find 
a combination of choices that not only satisfies the constraints, but also optimizes 
the preferences. Such problems are known collectively as COPs. 

Definition 2-6. COP: Given a set of variables V, a set of domains D, where each 
domain Di ∈ D is a set of possible values for a variable vi ∈ V, a set of constraints 
C over the variables of V, and an ordering ≼ over assignments, produce an 
assignment of values to variables that satisfies all of the constraints and is optimal 
according to the ordering. If A and A’ are assignments, A ≼ A’ means that A is 
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preferred or equivalent to A’. An assignment A is optimal if A ≼ A’ for all 
assignments A’. 

It is common practice to define the preference ordering ≼ by mapping consistent 
assignments to a set of objects with a known ordering. 

Definition 2-7. Objective function: Given a set S of valid solutions to a COP with 
preference ordering ≼P, and given a set of objects O with a known ordering ≼O, an 
objective function 𝑓𝑓 : S → O maps each solution of S to an object of O such that for 
any s1, s2 ∈ S, 𝑓𝑓(s1) ≼O 𝑓𝑓(s2) if and only if s1 ≼P s2. 

Objective functions are often defined as “scoring functions”, in which each solution 
is mapped to a real number and the objective is to either minimize or maximize the 
score according to the ≤ or ≥ ordering on the real number line. 

Since COP is a generalization of CSP and CSP is NP-complete, COP is generally 
NP-hard. The exception occurs when restrictions are imposed on the types of 
variables, constraints, or preferences that can be expressed. These restrictions 
define special classes of COP. 

One of the simplest forms of COP is Max-CSP (Freuder and Wallace 1992). 

Definition 2-8. Max-CSP: Given a set of variables V, a set of domains D where 
each domain Di ∈ D is a set of possible values for a variable vi ∈ V, and a set of 
constraints C over the variables of V, produce an assignment of values to variables 
that maximizes the number of satisfied constraints. 

Max-CSP expresses the basic preference of satisfying more constraints rather than 
fewer. In other words, Max-CSP is a special case of COP in which the partial 
ordering is defined such that A ≼ A’ if the number of constraints violated by A is 
less than or equal to the number of constraints violated by A’. Max-CSP is 
approximately (APX)-complete, which means that it is NP-hard and that it can be 
approximated to within a constant multiple of optimal in polynomial time, but also 
that there is no polynomial-time approximation scheme unless P = NP. 

A Max-CSP representation can be more useful than a CSP representation when the 
problem is over-constrained, meaning that it is impossible to satisfy all of the 
constraints simultaneously. A CSP algorithm would simply state that no solution 
exists. A Max-CSP algorithm would produce an assignment that satisfies as many 
of the constraints as possible. Barták et al. (2003) propose finding a maximal 
consistent assignment, which is a consistent assignment of as many of the variables 
as possible, leaving the remaining variables unassigned; instead of minimizing the 
number of violated constraints, the problem here is to minimize the number of 
unassigned variables. 
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A closely related problem is the Partial Max-CSP. 

Definition 2-9. Partial Max-CSP: Given a set of variables V, a set of domains D, 
where each domain Di ∈ D is a set of possible values for a variable vi ∈ V, a set of 
constraints C over the variables of V, and a partitioning of C into CH (the hard 
constraints) and CS (the soft constraints), produce an assignment of values to 
variables that satisfies all of the hard constraints of CH and maximizes the number 
of satisfied soft constraints of CS. 

In Partial Max-CSP some of the constraints are hard, meaning that they must be 
satisfied, and some of the constraints are soft, meaning that they do not necessarily 
need to be satisfied. Partial Max-CSP is therefore a generalization of both CSP and 
Max-CSP. CSP can be thought of as a special case of Partial Max-CSP in which all 
of the constraints are hard, and Max-CSP can be thought of as a special case of 
Partial Max-CSP in which all of the constraints are soft. 

As described in Section 2.1, SAT is a special case of CSP that allows for special-
purpose efficiency techniques. In the next section it will be shown that many COP 
solvers are based on CSP algorithms. To take advantage of the special-purpose 
efficiency techniques, some of these COP solvers employ a SAT encoding of an 
optimization problem. Max-SAT and Partial Max-SAT are special cases of Max-CSP 
and Partial Max-CSP, respectively, in which all of the variables are Boolean 
variables. 

Definition 2-10. Max-SAT: Given a set of Boolean variables V and a set of clauses 
C over the variables of V, produce an assignment of values to variables that 
maximizes the number of satisfied clauses. 

Definition 2-11. Partial Max-SAT: Given a set of Boolean variables V, a set of 
clauses C over the variables of V, and a partitioning of C into CH (the hard clauses) 
and CS (the soft clauses), produce an assignment of values to variables that satisfies 
all of the hard clauses of CH and maximizes the number of satisfied soft clauses of 
CS. 

Partial Max-SAT is a generalization of both SAT and Max-SAT. SAT is a special 
case of Partial Max-SAT in which all of the clauses are hard, and Max-SAT is a 
special case of Partial Max-SAT in which all of the clauses are soft. 

In all of these variations of Max-CSP, it is assumed that all of the soft constraints 
are equally important. That is, violating one constraint is as bad as violating any 
other constraint. This assumption does not always hold in the real world. To 
represent the relative importance of satisfying constraints or the relative cost of 
violating them, the Weighted CSP (WCSP) assigns each constraint a real-valued 
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weight. Similarly, Weighted SAT (WSAT) assigns a real-valued weight to each 
clause. Weighted Partial Max-SAT (WP Max-SAT) (Creignou et al. 2001) divides 
the clauses into hard and soft clauses and assigns a weight to each soft clause. 

Definition 2-12. WCSP: Given a set of variables V, a set of domains D, where each 
domain is a set of possible values for a variable of V, a set of constraints C over the 
variables of V, and a weighting function from constraints to real numbers W: C → 
ℝ, produce an assignment of values to variables that minimizes the sum of the 
weights of the violated constraints. 

Definition 2-13. WSAT: Given a set of Boolean variables V, a set of clauses C over 
the variables of V, and a weighting function from clauses to real numbers W: C → ℝ, 
produce an assignment of values to variables that minimizes the total weight of the 
violated clauses. 

Definition 2-14. WP Max-SAT: Given a set of Boolean variables V, a set of clauses 
C over the variables of V, a partitioning of C into CH (the hard clauses) and CS (the 
soft clauses), and a weighting function from soft clauses to real numbers W: CS → 
ℝ, produce an assignment of values to variables that satisfies all of the hard clauses 
of CH and minimizes the sum of the weights of the violated soft clauses. 

Max-CSP is a special case of WCSP in which each constraint is assigned an equal 
weight. Partial Max-CSP can also be represented as a special case of WCSP in 
which all of the hard constraints are assigned infinite weight and all of the soft 
constraints are assigned the same finite weight. Similarly, WSAT and Partial Max-
SAT are special cases of WP Max-SAT. 

Other formalisms use real numbers to represent various aspects of COPs but 
interpret these values differently. Fuzzy CSPs (FCSPs) (Ruttkay 1994), for 
example, assign a real number to each tuple within a constraint to represent the 
degree to which the tuple satisfies the constraint. 

Definition 2-15. FCSP: Given a set of variables V, a set of domains D, where each 
domain is a set of possible values for a variable of V, a set of constraints C over the 
variables of V, and a fuzzy relation function from tuples to real numbers F: C → [0, 
1], produce an assignment of values to variables that maximizes how well the 
constraints are satisfied in total. The fuzzy relation function F represents how well 
each tuple satisfies a constraint. 

CSP is a special case of FCSP in which the fuzzy relation F maps every tuple to 
either 1.0 (meaning that the tuple satisfies the constraint completely) or zero 
(meaning that the tuple fails to satisfy the constraint whatsoever). 
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Another representation that assigns real numbers is the Probabilistic CSP (PCSP) 
(Fargier and Lang 2005). The PCSP assumes that if the actual constraints of a CSP 
are uncertain, given a set of constraints, the actual CSP will contain some of those 
constraints but not others. Each constraint of a PCSP is therefore given a probability 
that it will need to be satisfied in the actual problem. 

Definition 2-16. PCSP: Given a set of variables V, a set of domains D, where each 
domain is a set of possible values for a variable of V, a set of constraints C over the 
variables of V, and a probability function from constraints to real numbers P: C → 
[0, 1], produce an assignment of values to variables that minimizes the overall 
probability of a constraint violation. The probability function P represents the 
likelihood that the constraint will need to be satisfied in the actual problem. 

CSP is a special case of PCSP in which the probability function P maps every 
constraint to either 1.0 (meaning that the constraint will certainly appear in the 
actual problem) or zero (meaning that the constraint will certainly not appear in the 
actual problem). Even though FCSPs and PCSPs have a very similar form, they 
have very different interpretations. Bistarelli et al. (1996) point out that an FCSP 
can be cast as a PCSP and vice versa. 

With so many alternative interpretations and representations of COPs, it can be 
difficult to understand the relationships between them. To describe the theoretical 
relationships between many of these representations, Bistarelli et al. (1996) present 
the Valued CSP (VCSP), based on ordered monoids, and Semiring-based CSP 
(SCSP), based on c-semirings. Ordered monoids and c-semirings are abstract 
algebraic constructs that describe various properties that impose some notion of an 
ordering among the elements of a set. When applied to a CSP, these properties 
define how to combine constraints and compare assignments against one another. 

Definition 2-17. VCSP: This is a CSP in which each constraint is given a value, an 
ordering operator defines a total ordering over the values, and a combination 
operator describes how values on constraints must be combined. The values and 
operators of a VCSP must follow the structure of an ordered monoid. The value of 
a constraint corresponds to its importance; informally, it is the cost of violating the 
constraint. The set of possible values are not necessarily numbers on a number line, 
so the ordering operator defines which values are larger and smaller. An assignment 
of values to variables (whether partial or complete) might violate a set of 
constraints, so the combination operator defines how the values of those violated 
constraints can be combined into a value for the assignment. 
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Special cases of VCSP include WCSP, FCSP, and PCSP. The authors also define 
new type of COP that they call the Lexicographic CSP, which combines aspects of 
WCSP and PCSP. 

Definition 2-18. SCSP: This is a CSP in which each tuple is given a value, an 
ordering operator defines a partial ordering over the values, and a combination 
operator describes how values on tuples must be combined. The values and 
operators of an SCSP must follow the structure of a c-semiring. The value of a tuple 
corresponds to its importance; informally, it is the amount gained by including the 
tuple in an assignment as a subset of the assignment’s variable bindings. The set of 
possible values are not necessarily numbers on a number line, so the ordering 
operator defines which values are larger and smaller. An assignment of values to 
variables (whether partial or complete) might contain several subtuples within it, 
so the combination operator defines how the values of those subtuples can be 
combined into a value for the assignment. 

As with VCSP, special cases of SCSP include WCSP, FCSP, and PCSP. The 
authors also define new type of COP that they call the Egalitarianism and 
Utilitarianism CSP, which combines aspects of WCSP and FCSP. 

The VCSP and SCSP are closely related but not equivalent. Bistarelli et al. (1996) 
prove that VCSP and SCSP are only equivalent if the ordering operators of both 
impose a total ordering. 

Another complication of optimization problems is introduced when multiple 
objectives are competing against one another. Such a problem can be expressed as 
a Multiobjective Optimization Problem (MOP) (Sawaragi et al. 1985). 

Definition 2-19. MOP (also called Multi-Criteria or Multi-Attribute Optimization 
Problem): Given a set of variables V, a set of domains D, where each domain is a 
set of possible values for a variable of V, a set of constraints C over the variables 
of V, and a set of objective functions O, produce an assignment of values to 
variables that simultaneously optimizes each of the objective functions. 

The major hurdle to overcome when dealing with MOPs is the fact that changing 
an assignment to make it more optimal according to one objective function often 
makes it less optimal according to other objective functions. One approach to this 
issue is to combine all of the objective functions into a single aggregate objective 
function (AOF). A common AOF assigns a weight to each individual objective 
function and optimizes the weighted sum. Each weight expresses the relative 
importance of the objective function, similar to the way weights within a WCSP 
express the relative importance of constraints. The difficulty with the AOF 
approach lies in identifying a meaningful way to combine the individual objective 
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functions. After the objective functions are combined, the problem can be expressed 
using one of the other COP formalisms, such as VCSP or SCSP, and solved using 
standard techniques. 

An alternative approach is to produce an assignment that does not optimize for all 
objective functions but is instead Pareto optimal (Pareto 1906). 

Definition 2-20. Pareto optimal (also called Pareto efficient): An assignment is 
Pareto optimal relative to a set of objective functions O if it is impossible to change 
the assignment in a way that increases its optimality according to one objective 
function without simultaneously decreasing its optimality according to another 
objective function. The Pareto frontier is the set of assignments that are Pareto 
optimal. 

By seeking a solution that is Pareto optimal, it is not necessary to devise a scheme 
that combines all of the objective functions, as with AOF. The issue with Pareto 
optimality, however, is that the set of assignments that are Pareto optimal can often 
be quite large. In practice, preferences often exist between assignments that are 
Pareto optimal but are not captured in the problem representation. 

3. Constraint Optimization Algorithms 

3.1 Constraint Satisfaction Algorithms 

3.1.1 Brute-Force search 

Several methods exist for solving an instance of CSP. The most straightforward 
method is a brute-force search, which simply tests every possible complete 
assignment of values to variables until either an assignment is found that satisfies 
all of the constraints or the set of all possibilities is exhausted. For finite-domain 
CSPs, brute-force search is easy to implement, sound (meaning that the result is 
guaranteed to be correct), complete (meaning that it is guaranteed to eventually 
terminate and give a result), and systematic (meaning that it will not test the same 
assignment more than once). 

In practice, however, brute-force search can be very inefficient. The number of 
complete assignments is exponential in the number of variables, and if a CSP has 
no solution, then brute-force search must test every single complete assignment 
before terminating. Brute-force search should generally only be considered when 
the number of variables is very low or when the number of solutions is very high. 
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3.1.2 Constraint Propagation 

A second approach to solving a CSP is constraint propagation, the process of 
inferring additional constraints based on the set of constraints given in the problem 
description. The constraints that are given in the problem description are known as 
explicit constraints; implicit constraints are the constraints that are implied by the 
explicit constraints but not listed explicitly. Constraint propagation is therefore the 
process of deducing the implicit constraints based on the explicit constraints. 

If a CSP contains n variables, it is possible to identify 2n unique subsets of variables. 
A constraint (whether explicit or implicit) exists over every subset of variables, so 
it is possible to define an exponential number of constraints. Of these constraints, 
n are unary constraints, each of which is defined over a single variable. One of these 
constraints is the global constraint, which is defined over the complete set of 
variables. 

Many forms of propagation exist, but all of them operate by iteratively tightening 
the set of constraints. A constraint is tightened by removing a tuple from the set of 
tuples that satisfy the constraint. A tuple can safely be removed from the satisfying 
set if it can be proved that the tuple does not have support. 

Definition 3-1. Support: A tuple t1 of constraint c1 is supported by a tuple t2 of 
constraint c2 if either the scope of c2 is a subset of the scope of c1 and the individual 
variable-value pairs of t2 are a subset of the variable-value pairs of t1, or if the scope 
of c2 is a superset of the scope of c1 and the individual variable-value pairs of t2 are 
a superset of the variable-value pairs of t1. 

Support is reciprocal: Tuple t1 supports tuple t2 if and only if t2 supports t1. 

A CSP constraint propagation algorithm repeatedly removes tuples from 
constraints if they have no support. Many propagation algorithms are both sound 
and complete. If the propagation process is sound and complete, when it is unable 
to remove any more tuples, it has proved that at least one solution exists, and when 
it has removed all of the tuples from any constraint, it has proved that no solution 
exists. The remainder of this section presents constraint propagation techniques for 
finite-domain CSPs. Constraint propagation techniques also exist for CSPs with 
continuous variable domains. 

The most basic form of constraint propagation is node consistency (Mackworth 
1977), which simply ensures that all of the unary constraints are satisfied. In 
practice, the constraints of a CSP might be imposed for different reasons or might 
come from different sources. Node consistency boils down to the process of 
collecting the unary constraints from different sources into a single representation 
to ensure that there exists at least one value that might be assigned to each variable. 
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With n variables and a maximum domain size of k, node consistency can be 
enforced in O(nk) time. 

Arc consistency (AC) (Mackworth 1977) extends this idea to pairs of variables by 
removing any tuple from a binary constraint (constraints over 2 variables) that does 
not have support from either of the 2 unary constraints that could support it. AC-1 
(Mackworth 1977), the basic algorithm for enforcing AC, requires O(n3k3) time, 
where n is the number of variables and k is the maximum domain size. AC-3 
(Mackworth 1977) uses a queue to reduce this to O(n2k3) time. AC-4 (Mohr and 
Henderson 1986) uses a complex counting scheme and is a provably optimal 
algorithm in the worst case, requiring O(n2k2) time, but AC-3 is often faster in 
practice. 

Path consistency (Mackworth 1977) continues in this manner by considering sets 
of 3 variables. Assume there are 3 variables, x1, x2, and x3, and 3 binary constraints 
between them with scopes {x1, x2}, {x2, x3}, and {x1, x3}. Assume that the partial 
assignment {x1 = v1, x2 = v2} satisfies the constraint over {x1, x2}. If there is no value 
v3 in the domain of x3 such that the tuples {x1 = v1, x3 = v3} and {x2 = v2, x3 = v3} 
both satisfy their respective constraints, it is impossible to extend the partial 
assignment {x1 = v1, x2 = v2}, so path consistency will remove the tuple {x1 = v1, x2 

= v2} from the constraint over {x1, x2}. In other words, path consistency removes 
any tuple from a binary constraint that would not have support from a constraint 
over a superset of 3 variables. With n variables and a maximum domain size of k, 
path consistency can be enforced in O(n5k5) time using the basic algorithm (Dechter 
2003). Analogously to AC, it is possible to use a queue like AC-3 to speed up this 
process to O(n3k5) time (Dechter 2003) or to use a counting scheme like AC-4 to 
speed it up to O(n3k3) time (Mohr and Henderson 1986). The counting-based 
algorithm for path consistency is provably optimal in the worst case but the queue-
based algorithm is often faster in practice. 

Path consistency can be generalized to include more variables in i-consistency (also 
called k-consistency) (Freuder 1978). Path consistency ensures that a consistent 
assignment of 2 variables can be extended to a consistent assignment of 3 variables; 
i-consistency ensures that a consistent assignment of i-1 variables can be extended 
to a consistent assignment of i variables. If not, i-consistency removes the tuple that 
represents the partial assignment of i-1 variables from its constraint. In other words, 
i-consistency removes any tuple from a constraint c1, where c1 is defined over i-1 
variables, that does not have support from a constraint c2, where the scope of c2 
extends the scope of c1 to an ith variable, and support from all constraints c3, where 
the scope of c3 is a subset of c2 and contains the ith variable that is not in the scope 
of c1. If the problem has n variables and a maximum domain size of k, i-consistency 
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can be enforced using a basic algorithm in O((nk)2i2i) time (Dechter 2003). The 
provably optimal algorithm for i-consistency uses a counting scheme like AC-4 and 
runs in O((nk)i) time in the worst case (Dechter 2003). 

Although very similar, 3-consistency (that is, i-consistency where i = 3) is not 
identical to path consistency in all cases. These 2 forms of consistency are only 
identical when there are no tertiary constraints (constraints over 3 variables), as in 
a binary CSP, which only contains unary and binary constraints. If the CSP contains 
any tertiary constraints, then a 3-consistency algorithm might remove tuples from 
a binary constraint because of an inconsistency in the tertiary constraint, but a path 
consistency algorithm would not. This means that 3-consistency is stronger than 
path consistency when the CSP contains tertiary constraints. 

The concept of i-consistency can be extended to global consistency (Freuder 1982), 
which can determine whether or not a CSP is satisfiable. A set of constraints is 
strong i-consistent if it is j-consistent for all j ≤ i. A set of constraints is globally 
consistent if it is strong i-consistent and i is greater than the size of the scope of the 
largest explicit constraint. For example, because 3-consistency and path 
consistency are equivalent in binary CSPs, a binary CSP that is path consistent is 
also globally consistent. Once the constraints of a CSP have been tightened to the 
point of global consistency, it is possible to extract a solution from it in polynomial 
time (Dechter 1992). Even an optimal global consistency algorithm, however, 
requires an exponential amount of time in general (Cooper 1990). 

Although global consistency is a sound and complete constraint propagation 
technique, several other inference mechanisms have also been developed. For 
example, generalized AC (Mohr and Masini 1988) is the inverse of i-consistency; 
it removes any individual variable binding if it does not have support in a constraint 
over i variables. As another example, a set of m constraints is relational (i,m)-
consistent (Dechter and van Beek 1995) if every consistent assignment to a subset 
of i of their variables can be extended to an assignment to all of their variables that 
satisfies all m constraints. If m is the maximum domain size of any variable in a 
given CSP, the consistency of the CSP can be tested by imposing strong relational 
(1,m) consistency. 

For any of these given forms of consistency, it is possible to define a form of 
directional consistency (Dechter and Pearl 1987). Directional consistency is useful 
in algorithms that assign values to variables in sequence, such as depth-first search 
(see Section 3.1.3). Given an ordering over the variables of a CSP, and given a 
consistent partial assignment over the first k variables in this ordering, directional 
consistency only enforces the form of consistency on the constraints with one or 
more unassigned variables in their scopes. Directional consistency can improve 
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efficiency by ignoring constraints over the variables that are already assigned 
values. 

Generally speaking, solving a CSP through constraint propagation alone can be 
very inefficient. The number of constraints (whether explicit or implicit) is 
exponential in the number of variables in the CSP, and the number of tuples in a 
constraint can be exponential in the number of variables in its scope. This means 
that constraint propagation can potentially be even less efficient than brute-force 
search. Many special classes of CSP have been identified for which special-purpose 
constraint propagation techniques can be applied very effectively.  

Unfortunately, many instances of CSP do not fall into any of these special classes. 
Constraint propagation is most frequently used to improve the efficiency of the 
methods described in the next few sections. For a survey of constraint propagation 
techniques, see Bessière (2006). 

3.1.3 Depth-First Search 

Depth-first search (also called backtracking search) is a trial-and-error process by 
which variables are assigned values one at a time. Given a finite-domain CSP, the 
basic depth-first search algorithm operates by choosing an unassigned variable, 
assigning a value to it, and checking the constraints for any inconsistencies. If the 
current partial assignment violates any constraints, the algorithm backtracks by 
unassigning the most recent variable binding and reassigning the variable to a 
different value. If all of the constraints are satisfied, then another variable is chosen 
for assignment, and the process is repeated until either all of the variables have been 
assigned and a solution is produced, or all of the values of the first variable have 
been tested and failed, proving that no solution exists. 

Depth-first search organizes the set of partial assignments of a CSP into a tree 
structure. Each vertex of this search tree represents a partial assignment, and each 
branch represents the binding of one more value to a variable. The root of this 
search tree represents the empty partial assignment, and each vertex below it 
represents a partial assignment in which the number of variables that have been 
assigned is equal to the length of the path from that vertex back to the root. The 
leaves of this search tree represent complete assignments, and some of these leaves 
represent solutions. 

Like brute-force search, depth-first search is sound, complete, and systematic for 
finite-domain CSPs. In fact, brute-force search could be described as a search 
technique that bypasses the upper levels of the depth-first search tree and scans 
through each of the leaves directly. Depth-first search makes use of the rest of the 
search tree to help organize this process. 
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Like any search algorithm, depth-first search must deal with a fundamental tradeoff. 
The term “search” is employed to convey the fact that these algorithms must guess 
where it should go to find a solution. Good guesses reduce the amount of searching 
necessary to find a solution but more computation time is generally required to 
make a good guess. The fundamental tradeoff of search is to balance the processing 
time per guess against the total number of guesses that must be made to minimize 
the overall search time. Each of the efficiency techniques described in the following 
presents an option for dealing with this tradeoff. 

As a depth-first search algorithm progresses, it is necessary to decide which 
variable should be assigned a value next. A variable ordering heuristic is any rule 
or method for making this decision. The most widely used variable ordering 
heuristic is the most-constrained variable heuristic (also called the fail first 
heuristic) (Haralick and Elliott 1980). This heuristic chooses the variable with the 
fewest values to be tested remaining its domain. If several variables are tied by this 
measure, the variable that appears in the most constraints with unassigned variables 
is chosen. If the current partial assignment is a dead end (meaning it cannot be 
extended to a solution), it will be necessary to test all of the values for at least one 
variable, so choosing the variable with the fewest values will help discover this fact 
with the least computation. If the current partial assignment is not a dead end, it 
will be necessary to assign a value to every variable, so choosing the variable with 
the tightest constraints will remove the most values from the domains of other 
unassigned variables through constraint propagation (discussed in the following). 
Smith and Grant (1998) have shown that the most-constrained variable heuristic 
can lead to poor performance in some situations, so Beck et al. (2003) have 
introduced the notion of promise to describe variable heuristics that attempt to 
maximize the likelihood of success. For a comparison of variable ordering 
heuristics see Gent et al. (1996). 

After choosing a variable, it is necessary to choose a value to assign to that variable. 
The most-common value-ordering heuristic is the least-constraining value heuristic 
(Geelen 1992). This heuristic chooses the value that will remove the fewest tuples 
from the constraints of unassigned variables. If the current partial assignment is a 
dead end, it will be necessary to test all of the values to prove this, so the value 
ordering will have no effect. If the current partial assignment is not a dead end, at 
least one value must lead to a solution, so choosing the value that is least likely to 
cause a constraint violation reduces the chance that it will be necessary to backtrack 
and test the other values later. Because the value ordering only affects efficiency 
when the current partial assignment is not a dead end, it generally has less of an 
impact on efficiency than the variable ordering. For more recent work on value 
ordering heuristics see Lecoutre et al. (2007). 
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Once the chosen value has been assigned to the chosen variable, it is possible to 
apply a form of directional consistency (see Section 3.1.2) to the resulting 
constraint network to propagate the effects of that variable assignment. This often 
results in the removal of values from the domains of unassigned variables that 
would lead to constraint violations. Any value that is removed through constraint 
propagation does not need to be tested during search, reducing the size of the search 
tree. A constraint propagation technique can impose any type of consistency—
stronger forms of consistency require more processing time but can also prune more 
values. If the form of consistency is strong enough, it is sometimes possible to 
remove all of the values from the domain of an unassigned variable, proving that 
the current partial assignment cannot be extended to a solution. The most common 
forms of constraint propagation are forward checking (Haralick and Elliott 1980; 
Dent and Mercer 1994) and maintaining arc consistency (Sabin and Freuder 1994). 
See Section 7 of Bessière (2006) for a survey of constraint propagation techniques 
in depth-first search. 

Even the best variable and value ordering heuristics can be fooled into making bad 
decisions for some problem instances. Random restarts can help to avoid this 
situation by imposing a limit on the number of times the algorithm can backtrack. 
When this limit is reached, the algorithm restarts and the limit is increased. If the 
heuristics rely on random choices (to break ties, for example) or information that 
was accumulated during the previous search attempt, a new sequence of variables 
and values will be chosen. If the sequence is effective for the problem instance, it 
will lead to a solution before the backtracking limit is reached. If not, the search 
will be restarted, and the new sequence will hopefully be more effective. See 
Gomes et al. (2000) for a discussion of random restarts. 

When a constraint is violated or a dead end is identified, the basic depth-first search 
algorithm backtracks over the most recent variable assignment to test a different 
value. This form of backtracking is called chronological backtracking. Other forms 
of backtracking are able to safely jump back over several variables without 
sacrificing completeness. Graph-based backjumping (Dechter 1989) backtracks to 
the last variable that shares a constraint with the conflict variable, skipping over 
any variables that are unrelated. Conflict-directed backjumping (Prosser 1993) 
keeps track of the variables that interfere with each other and is able to backtrack 
all the way to the most recent variable that was definitely involved in the conflict. 
Dynamic backtracking (Ginsberg and McAllester 1993) keeps track of even more 
information, allowing it to backtrack as far as conflict-directed backjumping and 
then reassign any variables that were unassigned during backtracking but were not 
involved in the conflict. See Kondrak and van Beek (1997) for a comparison of 
backtracking techniques. 
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It is not uncommon for a depth-first search algorithm to encounter a conflict, 
backtrack to test a different combination, and then encounter the exact same conflict 
later on during search. In some instances, a considerable amount of search is 
required to discover a conflict, so rediscovering the same conflict repeatedly can 
waste a significant amount of time. Nogood recording (Schiex and Verfaillie 1994) 
helps to avoid this waste of time by recording and conflicts as nogoods. 

Definition 3-2. Nogood: This is a partial assignment that cannot be extended to a 
solution. In other words, a nogood is a tuple that violates either an explicit or 
implicit constraint. 

In practice, it is generally necessary to record each nogood along with a 
justification. 

Definition 3-3. Justification: Given a nogood assignment A, some subset C’ of the 
explicit constraints C makes it impossible to extend A to a solution. The justification 
of nogood A is the subset of variables over which the constraints of C’ are defined. 

Each time a depth-first search algorithm backtracks, the set of variable assignments 
involved in the conflict is recorded as a nogood. As search continues, each new 
assignment is compared with the set of nogoods. If a nogood is found that matches 
the current partial assignment, the algorithm backtracks immediately without 
continuing to search that branch of the tree. In other words, nogood recording is the 
process of identifying implicit constraints and listing them explicitly. In practice, 
the number of nogoods identified can quickly exceed the space available to store 
them, so the largest ones are discarded because they require the most storage space 
and match the fewest partial assignments. 

Depth-first search is often the best approach for problem domains in which it is 
unclear whether or not a solution exists. The algorithm is sound and complete, so it 
is guaranteed to prove whether or not the problem has a solution. Additionally, the 
variety of techniques available to enhance the algorithm can make it much more 
efficient than either brute-force search or constraint propagation. Unfortunately, it 
is generally difficult to identify the combination of techniques that will lead to the 
best efficiency of depth-first search for any specific problem domain. Practitioners 
often implement several different efficiency techniques and compare the run times 
of each combination over a representative set of test problems. For example, 
Bessière and Régin (1996) found that maintaining AC combined with conflict-
directed backjumping does not significantly outperform maintaining AC alone. On 
the other hand, Narendra et al. (2000) found that maintaining AC can be improved 
when combined with dynamic backtracking, and Chen and van Beek (2001) found 
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that conflict-directed backjumping can be improved when combined with 
generalized AC. 

As with the general form of a finite-domain CSP, an instance of SAT can be solved 
with depth-first search and the efficiency techniques described in the previous 
section. The special form of the SAT representation, however, allows for several 
other techniques that can improve performance even further. For example, after 
assigning a value to a variable, Boolean propagation operates by removing all of 
the clauses that contain a literal that is equivalent to the assignment (because these 
clauses are satisfied) and all of the literals that are the negation of this assignment 
from any clauses that contain them (because these literals cannot satisfy their 
respective clauses). If all of the literals have been removed from a clause, it is 
impossible to satisfy the clause given the current partial assignment, so the 
algorithm must backtrack. Unit propagation (Zhang and Stickel 1996) improves the 
efficiency of Boolean propagation by checking the number of literals that remain 
in each clause every time a literal is removed. If only one literal remains, the 
assignment that matches this literal is the only way to satisfy the clause, so unit 
propagation makes this assignment and adds it to a queue to be processed before 
the search continues. The Davis-Putnam-Logemann-Loveland (DPLL, Davis et al. 
1962) algorithm applied unit propagation to great effect and serves as the basis of 
many modern SAT solvers. 

Recent advances in SAT have increased efficiency significantly. Notably, a SAT 
solver called Chaff (Moskewicz et al. 2001), an extension of DPLL, introduced 2 
new techniques. First, the 2 watched literals scheme speeds up unit propagation by 
identifying unit clauses very quickly. Second, the Variable State Independent 
Decaying Sums variable-ordering heuristic employs a clever counting scheme to 
select variables that appear in the most nogood clauses (this is another example of 
the most-constrained variable heuristic). Een and Sörensson (2003) combined state-
of-the-art techniques such as these into a single, compact, highly efficient, and 
freely available SAT solver called MiniSAT. Even though MiniSAT is 
implemented in only 600 lines of C++, it is competitive with any of the most 
efficient SAT solvers, many of which are tens of thousands of lines of code. 
Because of the efficiency improvements provided by such systems, it is not 
uncommon to solve a finite-domain CSP by converting the problem to an instance 
of SAT, solving it using these specialized techniques, and then converting the 
solution back to the original CSP representation. See Dixon et al. (2004) for a 
survey of SAT techniques. 
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3.1.4 Local Search 

Each of the aforementioned algorithms solves the CSP through some form of 
systematic search. Local search departs from this approach, opting instead for a 
nonsystematic search through the space of complete assignments. A local search 
algorithm begins by generating one or more complete (but possibly inconsistent) 
assignments. Each assignment is compared with constraints, and if any constraints 
are violated the assignment is modified. This process repeats until a solution is 
found, the available time is exceeded, or a prespecified number of assignments have 
been tested. 

As a local search algorithm progresses, it is possible that it will consider the same 
complete assignment more than once, which means that local search is not 
systematic. If a solution exists, but a local search algorithm cannot find it before 
the limit on time or the number of assignments tested is exceeded, the algorithm 
will not produce the correct result, which means that (when such limits are 
imposed) local search is not sound. Alternatively, if no limits are imposed, a local 
search algorithm could search the same subset of complete assignments repeatedly 
without ever terminating, so (without any limits imposed) local search is not 
complete. Because a local search algorithm cannot be both sound and complete, it 
is impossible for local search to prove that no solution exists for a given instance 
of CSP. The effectiveness of local search therefore increases with the number 
solutions to the given problem. 

It is interesting to compare the characteristics of local search to those of brute-force 
search and depth-first search. Local search and brute-force search both explore the 
space of complete assignments while depth-first search explores the space of partial 
assignments. Depth-first search and local search must both make heuristic guesses 
to decide where to explore next while brute-force search does not. Both brute-force 
and depth-first search are sound, complete, and systematic while local search is not 
systematic and either not sound or not complete for general CSPs. 

The central idea behind local search is to attempt to “repair” an assignment by 
changing the value of one or more variables. By repeatedly repairing more and 
more of the constraint violations, the algorithm might eventually be able to find a 
complete assignment that does not violate any constraints. Each local-search 
algorithm must therefore define the set of possible changes that could be made to 
an assignment along with a method of deciding which change to make. Depth-first 
search imposes tight restrictions on the set of partial assignments to consider next, 
retaining soundness and completeness at the possible expense of efficiency. Local 
search does not impose such tight restrictions, so soundness or completeness is 
sacrificed in the hopes of improving efficiency. 
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Like depth-first search, local search must consider the same fundamental tradeoff 
of any search algorithm: Making a better guess as to where to search next requires 
more time per decision but possibly reduces the number of decisions that must be 
made. To discuss this tradeoff from a theoretical perspective, it is helpful to 
describe the search space of a local-search algorithm as a graph. In this local-search 
graph, each vertex represents a complete assignment and each edge represents a 
change from one assignment to another. Given a complete assignment that is 
represented by a vertex v, the neighborhood of that assignment is the set of complete 
assignments that are represented by vertices that are adjacent to v. In this graph, a 
local-search algorithm moves from one vertex to another until it finds one that 
represents a solution. 

Once the neighborhood is known, the local-search algorithm must choose which of 
its neighbors to move to next. The problem lies in figuring out which neighbor will 
bring the search one step closer to a solution that might be many steps away. Local-
search algorithms generally favor neighbors that improve the complete assignment 
the most in hopes that these are the most likely to lead the search toward the closest 
solution. This is accomplished by defining an evaluation function that ranks each 
assignment. Maximizing evaluation functions assign a score to each assignment 
that reflects how closely the assignment matches a solution, so a higher value is 
better. Minimizing evaluation functions assign a distance to each assignment that 
reflects the amount of difference between the assignment and a solution, so a lower 
value is better. Whether the evaluation function is a maximizing or minimizing 
function, the same set of local-search techniques can be applied. 

Based on the local-search graph and the evaluation function, search algorithms are 
often discussed in terms of a landscape metaphor, in which each complete 
assignment lies on the surface of the land. The graph of neighbors defines where 
each assignment is located relative to the others, similar to coordinates of latitude 
and longitude. Carrying this metaphor forward, the evaluation function then defines 
the altitude of each assignment. For example, if a minimizing evaluation function 
is used, assignments that violate many constraints would be found at high altitudes, 
assignments that violate fewer constraints would be found at lower altitudes, and 
solutions would be found at the lowest altitude possible. 

The landscape metaphor leads to terminology that is found throughout the literature 
on local search. A local optimum is a region of the search space that is surrounded 
by assignments with values that are worse according to the evaluation function. A 
local optimum can be problematic because it can cause a local-search algorithm to 
repeatedly test the same few assignments without moving away to find a solution. 
A plateau is a region with little variance between nearby assignments according to 
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the evaluation function. When a local-search algorithm encounters a plateau, it must 
decide which direction to move based on sparse information, which can lead to 
aimless wandering over the search space. 

As will be discussed in the following, the landscape metaphor carries over to 
descriptions of how different local-search algorithms operate with terms such as 
hill climbing and random walk. Local-search algorithms can generally be grouped 
into 3 categories: greedy, random, and genetic. 

A greedy local-search algorithm (Selman and Kautz 1993) attempts to exploit local 
information to the fullest by always choosing a neighbor with the best evaluation. 
The reasoning behind this approach is that all of the constraint violations must be 
repaired to find a solution, so the fastest way to find a solution is to repair as many 
conflicts as possible at each step. Greedy local search is also known as hill-climbing 
when a maximizing evaluation function is used and as steepest descent when a 
minimizing evaluation function is used. The Min-Conflicts heuristic (Minton  
et al. 1992) is a well-known type of greedy local search that has been successfully 
applied to a variety of domains. The Min-Conflicts heuristic randomly chooses a 
variable that is involved in a conflict and then reassigns that variable to the value 
that minimizes the number of constraint violations. In other words, Min-Conflicts 
restricts its set of neighbors to those of a randomly chosen variable and then chooses 
a neighbor greedily from that set. GSAT (Selman et al. 1992, Selman and Kautz 
1993) is a greedy search algorithm that solves an instance of SAT by flipping the 
value of the variable that will increase the number of satisfied clauses the most. 

A GSAT can have difficulty when it encounters various features of the search space 
landscape. Plateau search (Hampson and Kibler 1993) allows the algorithm to move 
to assignments of equal valuation when none of the neighbors has a worse 
evaluation. This allows the algorithm to cross a plateau instead of stopping. Several 
techniques exist to escape local optima. Random restarts can be applied to start the 
search from a randomly chosen new assignment, similar to their use in depth-first 
search (Schöning 1999). Tabu search (Glover and Laguna 1993) keeps a list of 
recent variable-value bindings and disallows them to prevent backwards moves to 
assignments that have already been visited. Constraint weighting (Thronton 2000; 
Selman and Kautz 1993) calculates the distance of each assignment as a weighted 
sum of constraint violations and increases the weight of each constraint each time 
it is violated. If the same constraint is violated repeatedly, its weight will increase 
and the algorithm will move to an assignment that satisfies it. 

A random local-search algorithm employs random processes to increase the 
likelihood that it will find a solution. These algorithms are also called random-walk 
algorithms because they mimic a person walking randomly over the search space 
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landscape. The basic form of a random local-search algorithm is called ε-greedy, in 
which a neighbor is chosen greedily with probability ε and randomly with 
probability 1 – ε. When ε = 1, ε-greedy is equivalent to greedy search, and when  
ε = 0, ε-greedy is completely random. By choosing ε somewhere between 0 and 1, 
the algorithm can take advantage of greedy moves to guide the search toward a 
solution and random moves to help keep it out of local optima. A variant of ε-
greedy called simulated annealing (Kirkpatrick et al. 1983) slowly increases ε to 
eventually converge on a solution. Hao and Pannier (1998) present a comparison 
of simulated annealing and tabu search in which they find that tabu search is 
superior on a set of randomly generated problems. 

Random local-search algorithms can also be applied to solve instances of SAT. For 
example, WalkSAT (Selman et al. 1993) is a combination of ε-greedy and GSAT. 
WalkSAT applies the logic that a solution must satisfy all of the clauses but each 
clause only needs to be satisfied by a single literal. To choose the variable whose 
value will be flipped, WalkSAT begins by considering the set of variables that 
appear in unsatisfied clauses. WalkSAT then attempts to retain as many satisfied 
clauses as possible by restricting the set of possible variables to those that, when 
flipped, will not cause any new clauses to become unsatisfied. If more than one 
variable matches these criteria, WalkSAT greedily chooses the variable from this 
set that will repair the largest number of unsatisfied clauses. If no variable matches 
these criteria, then, with probability ε, WalkSAT greedily chooses the variable that 
will increase the number of satisfied clauses the most (like GSAT), and with 
probability 1 – ε, WalkSAT chooses randomly. 

A genetic algorithm attempts to mimic biological processes to cause a solution to 
evolve out of a population. A genetic algorithm begins by generating an initial 
population. When solving a CSP, each individual of the population represents a 
complete assignment. Each individual is evaluated according to a fitness function, 
which is simply another name for an evaluation function, and given a fitness score. 
Based on these fitness scores, a subset of individuals is chosen to survive and 
reproduce the next generation through the process of selection; Blickle and Thiele 
(1996) compare several selection schemes. Over time, the traits of the most 
successful individuals are more likely to be passed on and combined in future 
generations, eventually leading to a solution. 

To reproduce, 2 individuals are chosen randomly to be parents and the assignments 
they represent are copied. Next, a random crossover point is chosen to partition 
both of these copied assignments. For example, if the CSP contains 10 variables 
and the random crossover point is 3, each complete assignment will be split into 2 
partial assignments, one containing the first 3 variable assignments and the other 



 

Approved for public release; distribution is unlimited. 

22 

containing the last 7 variable assignments. Two offspring individuals can then be 
produced through the process of recombination, which combines the first partial 
assignment copied from one parent with the second partial assignment copied from 
the second parent. After recombination, random mutation randomly reassigns a 
subset of the variables of each offspring. 

Like other forms of local search, genetic algorithms must incorporate methods to 
escape regions that are locally optimal. As a genetic algorithm progresses, the fittest 
individuals survive and reproduce. Over time, the traits of a small number of 
exceptionally fit individuals can be spread throughout the population. As this 
happens, the population becomes more homogeneous and the algorithm can get 
trapped at a local optimum. Random mutation can only do so much to avoid this 
situation, so other methods have been developed. Random immigrants (Tinós and 
Yang 2007) are new random assignments that can be incorporated into the 
population to increase genetic diversity. Co-evolving species (Morrison 1998) must 
compete with each other but cannot reproduce with each other. Vrajitoru (2002) 
divides the population into genders, preventing each individual from reproducing 
with the half of the population and slowing the spread of genetic traits. See 
Michalewicz (1995) or Deb (1997) for a survey of genetic algorithms. 

Local search is most effective either when a large portion of the complete 
assignments are solutions, offering many opportunities for the search process to 
encounter one, or when local features of the search space give an accurate 
indication of the correct direction to move to find a solution. Local search can also 
be successfully combined with other techniques to solve CSPs. For example, 
Jussien and Lhomme (2002) apply constraint propagation to local search to improve 
efficiency. Chatzikokolakis et al. (2004) describe an algorithm that begins with  
depth-first search, but when a conflict is encountered, it repairs the conflict with 
local search instead of backtracking. The main weakness of local search is its 
incompleteness; if a solution exists, there is no guarantee of finding it, and if no 
solution exists, there is no way to prove it. The main strength of local search is its 
application to constraint optimization, as discussed in the next section. 

3.2 Constraint Optimization Algorithms 

Before jumping into constraint optimization techniques, it is worth discussing a 
metric commonly used to compare COP algorithms: anytime performance. An 
anytime algorithm can provide a response at any point in time and are useful when 
the time at which a solution will be requested is unknown. Many COP algorithms 
can act as anytime algorithms because they can produce a suboptimal solution 
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extremely quickly and then improve on it as time permits. The anytime performance 
of an anytime algorithm is the way in which solution quality improves over time. 

Many of the algorithms and techniques used for constraint optimization are variants 
of those used for constraint satisfaction. Here these techniques are categorized as 
constraint propagation, depth-first search, and local search. 

3.2.1 Constraint Propagation 

Some of the earliest use of constraint propagation in optimization was by Rosenfeld 
et al. (1976), who used a relaxed form of AC when solving FCSP. The form of AC 
that they used is relaxed because constraint propagation is generally harder for 
optimization problems than for satisfaction problems. Schiex et al. (1995) prove 
that AC is NP-complete for Max-CSP and that AC works for VCSP only when the 
combination operator is idempotent. A relation (or operator) ⊗ is idempotent if, 
given a set S and any element e ∈ S, e ⊗ e = e. Bistarelli et al. (1996) provide 
algorithms for i-consistency of VCSP and SCSP but these assume that combination 
is idempotent. Schiex (2000) defines a form of AC for VCSP that allows for 
nonidempotent combination operators, terminates, and produces equivalent 
problems; this method only gives up the uniqueness property of AC. Because 
constraint propagation is so difficult when applied to optimization, it is rarely 
considered an option for solving a COP alone. Instead, constraint propagation is 
usually applied to enhance the efficiency of optimization algorithms based on 
search. 

3.2.2 Depth-First Search 

Depth-first search is one of the common approaches to solving optimization 
problems. The application of depth-first search to COP is very similar to its 
application to CSP. Consider an instance of COP that uses the partial ordering ≼O. 
Ignoring the soft constraints, a depth-first search algorithm can solve the hard 
constraints as an instance of CSP. Let A be an assignment identified by this depth-
first search that satisfies all of the hard constraints. A is recorded as the best solution 
found so far. At this point, there is no guarantee that A is an optimal solution, so the 
search continues by backtracking from A and building on the same search tree. Let 
A’ be the next solution found that satisfies all of the hard constraints. If A’ ≼O A, 
meaning that A’ is preferred to A, then A’ replaces A as the best solution found so 
far. The process continues until the search space is exhausted. Once the search 
space is exhausted, the best solution found is guaranteed to be optimal. 

The efficiency of depth-first search can be improved using several techniques. One 
such technique is branch-and-bound. Branch-and-bound (e.g., Black 2005) is a 
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process of pruning branches from the depth-first search tree based on estimated 
upper and lower bounds around the preference value of the optimal solution. As 
depth-first search progresses, branch-and-bound uses a heuristic to estimate the best 
possible preference value that can be achieved by extending the current partial 
assignment. An admissible heuristic is one that is guaranteed never to provide an 
estimated preference value that is worse than what is really possible. 

For example, when solving an instance of Partial Max-CSP, a partial assignment A 
might have already satisfied 4 soft constraints out of 10 but violated one. Assume 
that, in reality, it is possible to extend A to a complete assignment that satisfies 3 
more soft constraints, so this solution would satisfy a total of 7 soft constraints and 
violate 3. Since it is possible to extend A and only violate 3 soft constraints, an 
admissible heuristic cannot return a preference value greater than 3. A simple 
admissible heuristic might assume that it is possible to extend A to a complete 
assignment without violating any additional soft constraints, so it would estimate a 
preference value of 1 (because 1 soft constraint is already violated). A more-
sophisticated heuristic could perform additional reasoning such as constraint 
propagation and might estimate a preference value of 2. 

When minimizing the preference value (as in the previous example), an admissible 
heuristic produces a lower bound on a partial assignment. A lower bound of a partial 
assignment A is a preference value lb(A) such that the preference value of every 
complete extension of A is greater than (meaning less preferred) or equal to lb(A). 
It is also possible to estimate an upper bound on the preference value of an optimal 
solution. An upper bound is a preference value ub such that the preference value of 
an optimal solution is less than or equal to ub. As with lower bounds, heuristics 
exist for estimating the upper bound of a problem, and an admissible heuristic is 
guaranteed to always err on the side of safety. One basic admissible upper-bound 
heuristic is to set the upper bound equal to the preference value of the best solution 
found so far. 

The branch-and-bound algorithm uses upper and lower bounds to speed up depth-
first search optimization as follows. First, the upper-bound heuristic estimates an 
upper bound for the problem. Depth-first search then begins by assigning a value 
to a variable and creating a partial assignment. The lower-bound heuristic then 
estimates a lower bound for the partial assignment. The combination of the upper- 
and lower-bound estimates gives the branch-and-bound algorithm its power: If the 
lower bound of a partial assignment is greater than the upper bound of the problem, 
it is impossible to extend that partial assignment to an optimal solution, so depth-
first search can backtrack immediately. As better solutions are found, the upper 
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bound can continue to decrease, allowing for earlier pruning and improved 
efficiency as the search progresses. 

For example, assume the branch-and-bound algorithm is given a Partial Max-CSP 
with 50 soft constraints. An admissible upper-bound heuristic could start with ub = 
51 because it is impossible to violate that many soft constraints. The depth-first 
search process finds a solution that violates 27 soft constraints, so ub is reduced to 
27. As search continues, it produces a partial assignment that violates only 25 soft 
constraints, but the admissible lower-bound heuristic is powerful enough to 
estimate that any complete extension will violate at least 30 soft constraints. Since 
it is impossible to extend this partial assignment to a solution that is better than the 
one already found, the algorithm can prune this branch and search elsewhere in the 
tree. 

This example demonstrates why the heuristics are so important to branch-and-
bound search. Branch-and-bound can backtrack whenever the upper and lower 
bounds cross. This means that decreasing the upper bound and increasing the lower 
bound will make them cross sooner, allowing for earlier pruning and improved 
efficiency. It is important to maintain admissibility, however, because the use of an 
inadmissible heuristic might cause branch-and-bound to backtrack too early and 
miss an optimal solution. Branch-and-bound is complete only if the upper- and 
lower-bound heuristics are both admissible. 

Because of the importance of heuristics in branch-and-bound search, a significant 
amount of COP research focuses on identifying heuristics that are both powerful 
and admissible. Much of this research attempts to improve lower-bound heuristics 
by incorporating constraint propagation techniques into branch-and-bound 
algorithms. Bistarelli et al. (1996) discuss incorporating soft consistency checks 
into branch-and-bound for binary VCSP. Larrosa and Schiex (2004) present 
efficient algorithms for maintaining AC in WCSP and WSAT. Cooper et al. (2007) 
present a new method for soft AC in WCSP that improves on existing lower bound 
heuristics. Dago and Verfaillie (1996) define valued nogoods, which extend the 
definition of nogoods used for CSP and make it possible to improve the quality of 
lower-bound estimates during the course of branch-and-bound search. 

Other research focuses on combining techniques into larger COP solvers that 
incorporate branch-and-bound search. Fu and Malik (2006) present 2 complete 
Partial Max-SAT algorithms based on Chaff. Heras et al. (2007) extend the 
MiniSAT solver to handle Max-SAT optimization in a solver they call 
MiniMaxSat. Bouveret et al. (2006) review a set of techniques of Max-CSP solvers 
submitted to the 2006 Max-CSP competition. 
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Assuming admissible heuristics, branch-and-bound search is sound and complete. 
Because it keeps finding better solutions and can be combined with efficiency 
techniques, it offers fairly good anytime performance for many applications. It is 
especially well-suited for partial constraint optimizations in which it is possible that 
the constraints cannot all be satisfied simultaneously. 

3.2.3 Local Search 

Local search is a very popular approach to COP. Recall that when using local search 
to solve a CSP, an evaluation function ranks each assignment based on how closely 
it matches a solution. To use local search to solve a COP, one need only design the 
evaluation function to implement the preference operator. In other words, when 
solving a CSP, the evaluation function of a local-search algorithm measures how 
close the assignment is to satisfying all of the constraints. When solving a COP, the 
evaluation function of a local-search algorithm measures how preferred the 
assignment is. The semantics of the evaluation function change but the local-search 
algorithm does not. Local search is an appealing option because the anytime 
performance is generally very good, but because it is incomplete, local search is not 
guaranteed to produce a globally optimal solution. 

Greedy- and random-search algorithms have been applied to many types of 
optimization problems. Talbi et al. (1997) use tabu search to solve large 
optimization problems in a parallel environment. Daum and Menzel (2002) perform 
natural language parsing by casting the problem as WCSP and solving it with local 
search. Kautz et al. (1997) present MaxWalkSAT, an extension of the WalkSAT 
algorithm (Selman et al. 1993), which is designed to solve instances of Max-SAT. 

Genetic algorithms are generally the method of choice when solving instances of 
MOP. Because the objectives of an instance of MOP can conflict with one another, 
a variety of Pareto optimal solutions is often preferable to a single solution. Greedy- 
and random-local-search algorithms only move from one assignment to a neighbor, 
so they focus on one small part of the search space at a time. Genetic algorithms, 
on the other hand, search a variety of assignments simultaneously across the 
population, making them ideal for quickly approximating the Pareto frontier. Van 
Veldhuizen and Lamont (2000) present a theoretical review of methods of 
evolutionary algorithms applied to MOP, while Zitzler et al. (2000) present an 
empirical comparison. Some research has combined depth-first search and local 
search into hybrid algorithms for constraint optimization. Sosič and Wilby (1994) 
demonstrate that a hybrid approach produces better anytime performance than 
either depth-first search or local search alone in instances of large traveling 
salesman optimization problems. Sachenbacher and Williams (2005) present a 
method that exploits plateaus in the search space by reformulating VCSPs into a 
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combination of hard and soft constraints, separating the search into distinct 
satisfaction and optimization phases. Hang et al. (2007) discuss the use of local 
search to improve approximate Max-CSP algorithms. 

Finally, several methods have been explored for improving efficiency when solving 
one type of COP by converting the problem to another type. For example, de Givry 
et al. (2003) describe methods for solving Max-SAT by converting it to WCSP. On 
the other hand, Ansótegui et al. (2007) describe a method for solving WCSP by 
converting it to Max-SAT. Argelich et al. (2008) present several efficient methods 
for encoding Max-CSP as Partial Max-SAT. 

4. Conclusions 

This report defines several different types of constraint satisfaction and 
optimization problems, explains the relationships between them, and details 
solution approaches and techniques. It cites numerous references for the interested 
reader to find even more detailed information about the topics discussed here.
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PCSP Probabilistic CSP 

SAT satisfiability 

SCSP Semiring-based CSP 

VCSP Valued CSP 

WCSP Weighted CSP 

WP Max-SAT Weighted Partial Max-SAT 

WSAT Weighted SAT 
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